stepwise quadrature - translation to russian
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

stepwise quadrature - translation to russian

NUMERICAL INTEGRATION
Gaussian integration; Gaussian numerical integration; Gauss quadrature; Gauss legendre quadrature; Gaussian Quadrature; Gauss–Lobatto quadrature; Gauss-Lobatto quadrature
  • 2}} – 3''x'' + 3}}), the 2-point Gaussian quadrature rule even returns an exact result.
  • ''n'' {{=}} 5)}}

stepwise quadrature      

математика

ступенчатая квадратура

stepwise         
WIKIMEDIA DISAMBIGUATION PAGE
Stepwise (disambiguation)

['stepwaiz]

общая лексика

поэтапный

скачком

ступенчато

ступенчатый

медицина

постепенный

Смотрите также

stepwise approximation; stepwise change; stepwise discontinuity; stepwise estimation; stepwise maximization; stepwise method; stepwise minimization; stepwise process; stepwise quadrature; stepwise regression

наречие

общая лексика

уступами

в виде ступенек

ступеньками

постепенно

поэтапно

stepwise         
WIKIMEDIA DISAMBIGUATION PAGE
Stepwise (disambiguation)
шаг за шагом

Definition

Quadrature
Waves or periodic motions the angle of lag of one of which, with reference to one in advance of it, is 90°, are said to be in quadrature with each other. [Transcriber's note: If the voltage and current of a power line are in quadrature, the power factor is zero (cos(90°) = 0)  and no real power is delivered to the load.]

Wikipedia

Gaussian quadrature

In numerical analysis, a quadrature rule is an approximation of the definite integral of a function, usually stated as a weighted sum of function values at specified points within the domain of integration. (See numerical integration for more on quadrature rules.) An n-point Gaussian quadrature rule, named after Carl Friedrich Gauss, is a quadrature rule constructed to yield an exact result for polynomials of degree 2n − 1 or less by a suitable choice of the nodes xi and weights wi for i = 1, …, n. The modern formulation using orthogonal polynomials was developed by Carl Gustav Jacobi in 1826. The most common domain of integration for such a rule is taken as [−1, 1], so the rule is stated as

1 1 f ( x ) d x i = 1 n w i f ( x i ) , {\displaystyle \int _{-1}^{1}f(x)\,dx\approx \sum _{i=1}^{n}w_{i}f(x_{i}),}

which is exact for polynomials of degree 2n − 1 or less. This exact rule is known as the Gauss-Legendre quadrature rule. The quadrature rule will only be an accurate approximation to the integral above if f (x) is well-approximated by a polynomial of degree 2n − 1 or less on [−1, 1].

The Gauss-Legendre quadrature rule is not typically used for integrable functions with endpoint singularities. Instead, if the integrand can be written as

f ( x ) = ( 1 x ) α ( 1 + x ) β g ( x ) , α , β > 1 , {\displaystyle f(x)=\left(1-x\right)^{\alpha }\left(1+x\right)^{\beta }g(x),\quad \alpha ,\beta >-1,}

where g(x) is well-approximated by a low-degree polynomial, then alternative nodes xi' and weights wi' will usually give more accurate quadrature rules. These are known as Gauss-Jacobi quadrature rules, i.e.,

1 1 f ( x ) d x = 1 1 ( 1 x ) α ( 1 + x ) β g ( x ) d x i = 1 n w i g ( x i ) . {\displaystyle \int _{-1}^{1}f(x)\,dx=\int _{-1}^{1}\left(1-x\right)^{\alpha }\left(1+x\right)^{\beta }g(x)\,dx\approx \sum _{i=1}^{n}w_{i}'g\left(x_{i}'\right).}

Common weights include 1 1 x 2 {\textstyle {\frac {1}{\sqrt {1-x^{2}}}}} (Chebyshev–Gauss) and 1 x 2 {\displaystyle {\sqrt {1-x^{2}}}} . One may also want to integrate over semi-infinite (Gauss-Laguerre quadrature) and infinite intervals (Gauss–Hermite quadrature).

It can be shown (see Press, et al., or Stoer and Bulirsch) that the quadrature nodes xi are the roots of a polynomial belonging to a class of orthogonal polynomials (the class orthogonal with respect to a weighted inner-product). This is a key observation for computing Gauss quadrature nodes and weights.

What is the Russian for stepwise quadrature? Translation of &#39stepwise quadrature&#39 to Russian